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Abstract: This paper discusses a detection mechanism for malicious code through statistical analysis of opcode 
distributions. 67 malware executables were sampled statically disassembled and their statistical opcode 
frequency distribution compared with the aggregate statistics of twenty non-malicious samples. We find that 
malware opcode distributions differ statistically significantly from non-malicious software.  Furthermore, rare 
opcodes seem to be a stronger predictor, explaining 12-63% of frequency variation. 

 
 

1. Motivation: 
 

World-wide financial damages induced by 
malware passed the $US10b mark in 1999; they 
had been averaging around US$14b for the last 
seven years (Computer Economics, 2007). In the 
same time span, the host base (end systems with 
an IP address) grew from 56m to roughly 440m, 
according to one estimate (Zakon, 2006). 
Viewed in conjunction with the smaller relative 
growth in damages, these numbers – if roughly 
correct - could be interpreted as a success story 
for signature-based anti-viral (AV) software, 
which is routinely deployed on personal 
computers nowadays.  
However, malware is evolving, and initial AV 
detection rates for recent modern malware do 
not look reassuring. In February 2007, for 
instance, seventeen state-of-the-art, updated AV 
scanners were checked against twelve well-
known, previously submitted, highly 
polymorphic and metamorphic malware 
samples. The miss rate was 100% to 0%, with an 
average miss rate of roughly 38% (Clementi, 
2007). The theoretical aspects of such 
metamorphic self-reproducing programs were 
presciently laid out 27 years ago (Kraus, 1980) 
and the emerging practical deployment of such 
malware predicted in 2001 (Szor, 2001). 
 

2. Introduction: 
 
The goal of this paper was to compare opcode 
distributions of malicious and non-malicious 
software and give a preliminary assessment of 
its usefulness for detection and differentiation of 

modern (polymorphic and metamorphic) 
malware. Polymorphic malware contain 
decryption routines which decrypt encrypted 
constant parts of the malware body. The 
malware can mutate its decryptors in subsequent 
generations, thereby complicating signature-
based detection approaches. The decrypted 
body, however, remains constant.  
Metamorphic malware generally do not use 
encryption, but are able to mutate their body in 
subsequent generation using various techniques, 
such as junk insertion, semantic NOPs, code 
transposition, equivalent instruction substitution 
and register reassignments (Christodorescu, 
2003) (Szor, 2005, pp.256-270) .  
The net result of these techniques is a 
continuously staler (time-sensitive) signature 
base suitable for pattern-based detection 
approaches, as recent server-side polymorphic 
malware proliferation amply demonstrated  
(Commtouch, 2007).  
Since signature-based approaches are quite fast 
(but show little tolerance for metamorphic and 
polymorphic code) and heuristics such as 
emulation are more resilient (but quite slow and 
may hinge on environmental triggers), a 
detection approach that combines the best of 
both worlds would be desirable. This is the 
philosophy behind a structural fingerprint.  
Structural fingerprints are statistical in nature, 
and as such are positioned as ‘fuzzier’ metrics 
between static signatures and dynamic 
heuristics.  
The structural fingerprint considered in this 
paper is based on the extended x86 IA-32 binary 
assembly instructions without arguments, from 



random software samples, blocked for criteria 
described below.  Section 3 gives a review and 
an evaluation of related classification and 
detection research. Sections 4 and 5 outline the 
sampling, opcode extraction and statistical 
testing procedures. Sections 6, 7, 8 and 9 discuss 
findings, improvements to the presented 
approach, malware on the horizon and 
contributions of this research, respectively.  
 

3. Related Work: 
 

Explicitly statistical analysis’ of structural 
features of binaries files were undertaken by (Li, 
2005) and (Weber, 2002).  Li et al used 1-gram 
analysis of binary byte values (not opcodes) to 
generate a fingerprint (a ‘fileprint’) for file type 
identification and classification purposes. Weber  
et all start from the assumption that compiled 
binaries exhibit homogeneities with respect to 
several structural features such as instruction 
frequencies, instruction patterns, memory 
access, jump/call distances, entropy metrics and 
byte-type probabilities and that tampering by 
malware would disturb these homogeneities. 
They indicated having implemented a 
comprehensive PE Analysis Toolkit (‘PEAT’) 
and tested it on several malware samples.  Sadly, 
no results beyond some tantalizing morsels are 
given. Attempts to contact the authors for a 
version of PEAT were also unfortunately for 
naught.  

Further static and dynamic malware 
investigations were undertaken by (Chinchani, 
2005) (Rozinov, 2005) and (Polychronakis, 
2006) (Ries, 2005) (Bilar, 2007) (Bayer, 2006), 
respectively. Chinchani et al implemented an 
involved scheme for statically detecting exploit 
code of a certain general structure (NOP sled, 
payload, return address) in network streams by 
analyzing data and control flow information. 
They reported robust results vis-à-vis 
metamorphic malware.  
With an eye towards detection of self-contained 
polymorphic shellcode, Polychronakis et al 
implemented a full-blown NIDS-embedded x86 
emulator that speculatively executes potential 
instruction sequences in the network stream to 
compare it against polymorphic shellcode 
behaviour. 
Their tuned behavioural signature is partly 
opcode-sequence based:  An execution chain 

containing either a call, fstenv, or fsave 

instruction, followed by a read from the memory 
location where the instruction pointer was stored 
as a result of one of the above instructions, 
followed by some tuned number of specific 
memory reads is interpreted as shellcode. They 
validated their nifty scheme against thousands of 
shellcode instances created by ten different 
state-of-the-art polymorphic shellcode engines, 
with zero false negatives.  
Bayer and Ries’ behavioural analysis 
implementations took a different approach: They 

Opcode Goodware Kernel RK User RK Tools Bot Trojan Virus Worms 

mov 25.3% 37.0% 29.0% 25.4% 34.6% 30.5% 16.1% 22.2% 

push 19.5% 15.6% 16.6% 19.0% 14.1% 15.4% 22.7% 20.7% 

call 8.7% 5.5% 8.9% 8.2% 11.0% 10.0% 9.1% 8.7% 

pop 6.3% 2.7% 5.1% 5.9% 6.8% 7.3% 7.0% 6.2% 

cmp 5.1% 6.4% 4.9% 5.3% 3.6% 3.6% 5.9% 5.0% 

jz 4.3% 3.3% 3.9% 4.3% 3.3% 3.5% 4.4% 4.0% 

lea 3.9% 1.8% 3.3% 3.1% 2.6% 2.7% 5.5% 4.2% 

test 3.2% 1.8% 3.2% 3.7% 2.6% 3.4% 3.1% 3.0% 

jmp 3.0% 4.1% 3.8% 3.4% 3.0% 3.4% 2.7% 4.5% 

add 3.0% 5.8% 3.7% 3.4% 2.5% 3.0% 3.5% 3.0% 

jnz 2.6% 3.7% 3.1% 3.4% 2.2% 2.6% 3.2% 3.2% 

retn 2.2% 1.7% 2.3% 2.9% 3.0% 3.2% 2.0% 2.3% 

xor 1.9% 1.1% 2.3% 2.1% 3.2% 2.7% 2.1% 2.3% 

Table 1: Comparison of the 14 most frequent opcodes 

 



ran the malware dynamically in a sandbox, 
record security-relevant Win32 API calls, and 
constructed a syscall-based behavioural 
fingerprint for malware identification and 
classification purposes. Rozinov, on the other 
hand, located calls to the Win32 API in the 
binary itself: While Ries and Bayer recorded the 
malware’s system calls dynamically during 
execution, Rozinov statically disassembled and 
simplified the malware binary via slicing, 
scanned for Win32 API calls and constructed an 
elaborate Finite State Automaton signature for 
later detection purposes.  
Recently, graph-based structural approaches 
gained some traction. (Flake, 2005) proposed a 
simple but effective signature set to characterize 
statically disassembled binaries: Every function 
in the binary was characterized by a 3-tuple 
(number of basic blocks in the function, number 
of branches, and number of calls). These sets 
were used to compare malware variants and 
localize changes. (Bilar, 2007) examined the 
static callgraphs of 120 malicious and 280 non-
malicious executables. He fitted Pareto models 
to the in-degree, out-degree and basic block 
count distributions, and found a statistically 
significant difference for the derived power law 
exponent of the basic block count fit. He 
concluded that malware tended to have a lower 

basic block count than non-malicious software, 
implying a simpler structure: Less interaction, 
fewer branches, and more limited functionality. 
In an exemplary exposition for the purposes of 
worm detection, (Kruegel, 2006) extracted 
control flow graphs from executable code in 
network streams, augmented them with a 
colouring scheme, identified k-connected 
subgraphs that were subsequently used as 
structural fingerprints. He evaluated his scheme 
offline against 342 malware samples from 93 
distinct families.  
The general problem with pattern-based 
approaches is not accuracy; the individual 
classifiers can be tuned to the desired false 
negative or positive rates. The problem is really 
one of practical detection speed: As the 
adversarial dissimulation techniques of malware 
continue to evolve, computational complexity 
issues (Spinellis, 2003) will soon show the 
practical limits of the more involved emulation 
and parsing schemes. Structure-based 
approaches (based on opcode frequencies and 
callgraph structures, for instance) may capture 
enough semantic richness to detect dissimulated 
malware without the necessity of full-blown 
emulation.  
 

Opcode Goodware Kernel RK User RK Tools Bot Trojan Virus Worms 

bt 30 0 34 47 70 83 0 118 

fdvip 37 0 0 35 52 52 0 59 

fild 357 0 45 0 133 115 0 438 

fstcw 11 0 0 0 22 21 0 12 

imul 1182 1629 1849 708 726 406 755 1126 

int 25 4028 981 921 0 0 108 0 

nop 216 136 101 71 7 42 647 83 

pushf 116 0 11 59 0 0 54 12 

rdtsc 12 0 0 0 11 0 108 0 

sbb 1078 588 1330 1523 431 458 1133 782 

setb 6 0 68 12 22 52 0 24 

setle 20 0 0 0 0 21 0 0 

shld 22 0 45 35 4 0 54 24 

std 20 272 56 35 48 31 0 95 
Table 2: Comparison of rare opcodes (in parts per million) 

 



 
   

 
Table 3: z-scores for frequent (top) and rare (bottom) opcodes 

 



4. Extracting Opcodes: 
 
The first step consisted of gathering random 
samples of malicious and non-malicious 
(‘goodware’) binaries. For goodware, sampling 
followed a two step process: An inventory of all 
PE exe files on a MS XP Home box was 
gathered by Advanced Disk Catalog (Elcomsoft, 
2004). A preliminary binary file size distribution 
investigation yielded a log-normal distribution; 
for an in-depth explanation of the underlying 
generative processes, see (Mitzenmacher, 2003) 
and (Limpert, 2001).  Twenty executables were 
uniformly sampled into four size blocks,   five 
samples per block.  
The size intervals were chosen as [0-10KB), 
[10-100K), [100-1K) and [1M-10M]; with 
square bracket and parenthesis denoting closed 
and open endpoints, respectively.  
For malware, seven classes of interest were 
fixed (kernel-mode rootkit, user-mode rootkit, 
tool, bot, trojan,  virus, and worm). Chris Ries’ 
collection (Ries, 2005) of 77 malware specimens 

was inventoried and 67 PE binaries (exe and 

dll) sampled into the seven classes of interest, 

with at least five unpacked samples per class.  
The malware specimens included variants of 
Apost, Banker,  Nibu, Tarno, Beagle, Blaster, 
Frethem, Gibe, Inor, Klez, Mitgleider, 
MyDoom, MyLife, Netsky, Sasser, SDBot, 
Moega, Randex, Spybot, Pestlogger and 
Welchia.  
Figure 1 illustrates the analysis workflow after 
the sample selection for malware; for goodware 
it follows essentially the same steps. 
The samples were subsequently loaded into the 
de-facto industry standard disassembler, IDA 
Pro (DataRescue, 2006), in which a modified 
plugin, InstructionCounter (Porst, 2005), was 
run which extracted opcode statistics from the 
samples. An underground tool, PEiD (jibz, 
2006), was used to augment the dataset with 
compiler and packer information, if applicable  
and identifiable. For goodware, a ‘functionality 
class’ (e.g. file utility, IDE, network utility, etc) 
was added manually to the dataset.  
These datasets were parsed with a Java program 
and the JAva MAtrix numerical analysis package 
(Mathworks, 2005). From the datasets, a list of 

opcodes was constructed, and the datasets 
normalized for further analysis in MS Excel.  All 
this was run on MS Windows XP Pro in the 
virtual environment provided by VMPlayer 
(VMWare, 2005), following best practices in 
malware analysis (Szor, 2005, pp. 611-655). 
 

4.1. Opcode Breakdown: 
 

A list of opcodes was gathered from the samples 
and augmented with the entries in (Wikipedia, 
2006), totalling 398 IA-32 opcodes.  
The goodware samples yielded roughly 1.5m 
opcodes, and 192 different opcodes were found. 
72 opcodes accounted for >99.8% of opcodes 
found, 14 opcodes accounted for ~90%, and the 
top 5 opcodes accounted for ~64% of extracted 
opcodes. Figure 2 shows the opcode breakdown 
graphically for the 14 most frequent opcodes for 
goodware. 
The aggregate malware samples yielded roughly 
665,000 opcodes. 141 different opcodes were 

found, including two undocumented ones, salc 

and icebp. Sixty opcodes accounted for 

>99.8% of opcodes found, 14 opcodes 
accounted for 92%, and the top 5 opcodes 
accounted for 65% of the extracted opcodes. 
Figure 3 shows the opcode breakdown for the 14 
most frequent opcodes for malware (aggregated 
across classes). 

Figure 1: Analysis setup and workflow 

 



 

 
Figure 2: Most frequent 14 opcodes for goodware 
 

 
We see that the top five listings for both 

malware and goodware are identical (mov, 

push, call, pop, cmp) and some minor rank 

permutations in the lower rankings. 
A more granular proportional breakdown of the 
most frequent opcodes – specifically along the 
seven malware classes of interest - is shown in 
Table 1.  
 
 

 
Figure 3: Most frequent 14 opcodes for malware 

5. Statistical Analysis:  
 

Frequency data in form of a 8*14 contingency 
table (rows: opcode, columns: binary classes) in  
and, three questions were formulated: 
 
1a) Is there a statistically significant difference  

in opcode frequency between goodware and the 
seven malware classes of interest ?  

 

1b) If there is a statistically significant 

difference, which opcode(s) is or are responsible 

for it? 

 

2) How strong is the association between 

malware class and opcodes? 

 
Statistical testing was used to shed some light on 
questions 1) and 2). Question 1a) was tested 
using Pearson’s Chi Square procedure; for 1b) 
this was followed by a post-hoc standardized 
residual (STAR) testing of individual cells 
(Haberman, 1973).  
The chi-square test examined the association 
between the row and column variables in a two-
way table. The null hypothesis H0 assumed  no 
association between the variables (in other 
words, software class had no bearing on opcode 
frequency). The alternative hypothesis HA 
claimed that some association existed.  
The STAR post-hoc statistic is a z-score, 
asymptotically normal N(0,1) under the  null 
hypothesis H0  of independence, and indicates  
the   H0  fit for the individual cell. (Kim, 2006). 
Question 2) was tested using Cramer’s V, a 
measure of association strength or dependency 
between two categorical variables in a 
contingency table (Woo, 2005). 

 



 

 

 

Table 4: Association strength between opcodes and malware classes. Rare opcodes (bottom) showed stronger 
association than more frequent ones (top). 

 



5.1. Most Frequent Opcodes: 
 
The first investigation focussed on the most 
frequent opcodes, as listed in Table 1. Table 3 
(top) lists z-scores assessing opcode and 
malware class independence and Table 4 (top) 
shows the strength of the association. Cells are 
colour-coded for easier interpretation. The cut-
off point for deviation was chosen as zc = 5. 
White cells indicate that there is no significant 
deviation from H0, bright red and blue indicate a 
much higher or lower occurrence of the 
particular opcode, as indicated by their very high 
or low z-scores. 
Compared to non-malicious binaries, roughly 
1/3 of the cells exhibited similar, 1/3 higher and 
1/3 lower opcode frequencies. Speculations 
about these results were given in the side notes 
of Table 4 (top). It should be noted that these 
merit further investigation and should be taken 
as hypotheses. 
 

5.2. Rare Opcodes: 
 
Rare opcodes were not pruned akin to the most 
common opcodes; the frequency of the 14 rarest 
opcodes is zero for practically all cells. The rare 
opcodes listed in Table 2 were chosen uniformly 
at random among the population of opcode with 
frequency occurrences under 0.2% of total 
opcodes. 
Table 3 (bottom) lists z-scores assessing opcode 
and malware class independence, and Table 4 
(bottom) shows the strength of the association. 
Again, cells are colour-coded for easier 
interpretation. The cut-off point for deviation 
was chosen to be zc = 3, more sensitive than for 
frequent opcodes because of the very small 
number of occurrences. 
Compared to non-malicious execuatbles, 
roughly 70% of the cells exhibited similar, 30% 
higher and 10% lower opcode frequencies. 
Again, some preliminary hypotheses about the 
nature of these results were given in the side 
notes. 

6. Discussion of Results: 
 
Cramer’s V can be interpreted as how much of 
the association can be explained without 
reference to other factors (Connor-Linton, 
2003). For the case of the most common 14 
opcodes, we see that opcodes were a relative 
weak predictor, explaining just 5-15% of the 
frequency variation. For the rarer 14 opcodes, 
the association was much stronger. The 
association between rare opcodes and malware 
explained 12-63% of the frequency variation 
(see Table 4). 
In sum, malware opcode frequency distribution 
seems to deviate significantly from non-
malicious software. Rarer opcodes seem also to 
explain more frequency variation then common 
ones. 
 

7. Further Improvements: 
 
Improvements to this approach can be 
undertaken along several lines. From the 
statistical testing point of view, further control 
procedures refinements for false discovery rate 
and type I errors, along the lines of (Kim, 2006, 
pp. 74-79) seem promising. Furthermore, the 
scope of the study could be broadened by 
analyzing n-way association (as opposed to 2-
way) of factors.  
Other factors beyond atomic opcodes such as 
compiler type (MS, Watcom, Delphi, gcc etc), 
opcodes classes (transfer, control flow, 
arithmetic, extensions etc) may yield some 
insight, as well. Inspired by the opcode-
sequence based detection signatures of 
(Polychronakis, 2006), enriching the opcode 
factor beyond isolated opcodes to semantic 
‘nuggets’ (positioned size-wise between atomic 
opcodes and basic blocks) may be a good idea.  
Also, specific investigation of malware which 
implements conventional (Christodorescu, 2003) 
and ‘targeted’ obfuscation techniques 
(Yamauchi, 2006) may shed further light on the 
predictive value of opcode frequency 
distribution analysis. Finally, a time-series 

analysis of selected opcodes (like nop, 



sysenter, icebp) may be another way of 

discerning tell-tale trends and worth a try. 
 

8. Malware on the Horizon: 
 
It is hard to gauge how much mileage pattern-
matching based AV detection techniques still 
have in them in light of these polymorphic and 
metamorphic threats. Some industry researchers 
are optimistic, maybe unduly so (Emm, 2007).  
We briefly mention k-ary malware, a most 
worrisome development, in this context. K-ary 
malware, of which at this time only laboratory or  
very trivial examples are known to exist, seem 
able to elude conventional deployed defences in 
principle, not just in practice (Filiol, 2007). 
This feat is accomplished by partitioning the 
malware’s functionality spatio-temporally into k 
distinct parts, with each part containing merely 
an innocuous subset of the total instructions. In 
serial or parallel combination, they subsequently 
become active. Current AV models seem unable 
to detect this threat (or disinfect completely 
upon detection), which may be due to 
fundamental theoretical model assumptions 
(Filiol, 2006). 
In light of existing and emerging malware, 
developing new models and methods is prudent. 
In the theoretical realm, this may entail moving 
beyond Turing machine models premised on the 
strong Church-Turing thesis (“computation-as-
functions”) towards more expressive models 
premised on “Interactive Computations” 
(Goldin, 2005). Interestingly, the necessity for a  
theoretical evolution was foreshadowed by 
Turing in his 1936 paper with his choice ‘c-
machine’, as opposed to the standard automatic 
‘a-machine' (Turing, 1936). 
 

9. Contributions of this Research: 
 
We investigated opcode frequency distributions 
as a means to identify and differentiate malware. 
The scientific contribution of this research 
includes descriptive opcode frequency data for a 
medium-sized sample of malicious and non-
malicious executables. The testing procedures 
went beyond standard Chi-Square tests in an 

attempt to isolate the opcodes that are most 
strongly associated with certain malware classes. 
Furthermore, we gave a quantitative statistical 
measure of how strong this association might be. 
The applications of these findings are of interest 
to several problem domains: AV scanners and 
intrusion prevention systems may get a fast first-
pass criterion for on-demand, run-time execution 
and in-transit scanning.  
Finally, these results and the synopsis of related 
work may stimulate further development and 
refinement of forensic tools such as Encase 
Forensics Law Enforcement (Guidance, 2006) 
and FTK (AccessData, 2005) for the benefit of 
law enforcement investigations and cyber-crime 
thwarting efforts. 
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